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Abstract. We present an analysis of twist-2, leading order QCD amplitudes for hard exclusive leptopro-
duction of mesons in terms of double/nonforward parton distribution functions. After reviewing some
general features of nonforward nucleon matrix elements of twist-2 QCD string operators, we propose a
phenomenological model for quark and gluon nonforward distribution functions. The corresponding QCD
evolution equations are solved in the leading logarithmic approximation for flavor nonsinglet distributions.
We derive explicit expressions for hard exclusive π0, η, and neutral vector meson production amplitudes
and discuss general features of the corresponding cross sections.

1 Introduction

Our current knowledge of the sub-structure of nucleons
is based to a large extent on high-energy scattering ex-
periments which probe its quark and gluon distribution
functions. The most prominent processes in this respect
are deep-inelastic scattering and Drell-Yan leptoproduc-
tion. In addition a large amount of information can be
deduced from measurements of electromagnetic and weak
form factors.

Since recently new observables, namely nonforward par-
ton distribution functions, attract a great amount of inter-
est. Although being discussed already some time ago [1–3],
they were introduced in the context of the spin structure
of nucleons in [4]. Nonforward parton distributions are a
generalization of ordinary parton distributions [4,5]. How-
ever they are also closely related to nucleon form factors.
Thus they combine different aspects of the nucleon struc-
ture and offer new insights.

To summarize the relation of nonforward parton dis-
tributions to ordinary parton distributions recall that at
the twist-2 level the latter can be represented as nor-
malized Fourier transforms of forward nucleon matrix el-
ements of non-local QCD operators [6], constructed as
gauge-invariant overlap of two quark or gluon fields sep-
arated by a light-like distance. Nonforward parton distri-
butions are defined by the same non-local QCD operators
– just sandwiched between nucleon states with different
momenta and eventually spin. Equally close is the relation
to nucleon form factors which are defined by nonforward
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matrix elements of the same QCD operators taken in the
local limit.

Nonforward parton distributions are probed in pro-
cesses where the nucleon target recoils elastically. To se-
lect twist-2 correlations a large scale has to be involved.
One possible process is deeply-virtual Compton scattering
as investigated in [4]. Another promising class of reactions
sensitive to nonforward distributions is hard exclusive lep-
toproduction of mesons (for recent works see [5,7,8] and
references therein). This is based on a factorization theo-
rem which has been proven recently in [8]. It concerns the
kinematic domain of large photon virtualities Q2 � Λ2

QCD
and moderate momentum transfers |t| ∼ Λ2

QCD. The theo-
rem states that for incident longitudinally polarized pho-
tons the meson production amplitudes can be factorized
in a perturbatively calculable part, describing the inter-
action of the virtual photon with quarks and gluons of
the target, and matrix elements which contain all infor-
mation about the long-distance non-perturbative strong
interaction dynamics in the produced meson and the nu-
cleon target. The latter are nothing else than the wanted
nonforward distribution functions.

Data on the exclusive production of neutral vector
mesons have been taken lately at high center of mass en-
ergies at HERA (for a review and references see [9]). In
the measured kinematic domain the corresponding pro-
duction cross sections are controlled by the nonforward
gluon distribution of the target. The latter has been ap-
proximated in earlier investigations by the ordinary gluon
distribution of the target nucleon, [10–13]. The quality of
this procedure is still a matter of debate (see e.g. [14]).

At smaller center of mass energies, typical for current
and future fixed target experiments at TJNAF [15], HER-
MES [16] and COMPASS [17], a similarity of the non-
forward and ordinary gluon distribution in the accessible
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kinematic domain is not likely. Furthermore also the non-
forward quark distribution of the target will contribute
in a significant way. Therefore information about nucleon
nonforward matrix elements can be obtained from these
experiments. In addition, measurements of other exclusive
processes, like pseudoscalar or charged vector mesons pro-
duction, will allow to access a variety of new nonforward
quark and gluon distribution functions [8].

In this paper we outline the calculation of hard exclu-
sive leptoproduction amplitudes for a variety of mesons.
To obtain first insights in the magnitude and behavior
of the corresponding cross sections a modeling of nonfor-
ward parton distributions is necessary. We use a simple
ansatz which satisfies constraints due to forward parton
distributions, form factors and discrete symmetries. Fur-
thermore, we discuss the Q2-dependence of nonforward
quark distributions in the nonsinglet case by solving the
corresponding evolution equation. We are then in the posi-
tion to provide baseline estimates for the differential cross
sections for π0, η and neutral vector meson production.

The structure of this paper is as follows: in Sect. 2
we review the definition and general features of double
and nonforward distribution functions. A simple model
for double distributions is presented in Sect. 3. In Sect. 4
the Q2-evolution of nonsinglet quark distributions is out-
lined. Exclusive meson production amplitudes are derived
in Sect. 5. After presenting results in Sect. 6, we summa-
rize in Sect. 7.

2 Double and nonforward distribution
functions

We first recall definitions and basic features of double and
nonforward distribution functions. For this purpose we
stay close to the notation of [5]. In leading twist quark
and gluon distribution functions of nucleons are defined
by forward matrix elements of non-local light-cone opera-
tors sandwiched between nucleon states [6]:

〈N(P, S)| Ô(0, z) |N(P, S)〉z2=0

∼
∫ 1

0
dx

[
e−ix(P ·z)f(x)± eix(P ·z)f̄(x)

]
. (1)

Here |N(P, S)〉 represents a nucleon with momentum P

and spin S. The operator Ô(0, z) stands for a product
of two quark or gluon fields, respectively, separated by a
light-like distance z ∼ n, with n · a = a+ = a0 + a3 for
an arbitrary vector a. In (1) we have suppressed any de-
pendence on the normalization scale. Note that the sign
in front of the anti-parton distribution f̄ is determined
by the charge conjugation property of the operator Ô in
the local limit. Forward matrix elements as in (1) are ex-
plored in processes where no momentum is transfered to
the target, e.g. in forward virtual Compton scattering or
deep-inelastic scattering, respectively.

2.1 Double distribution functions

In exclusive production processes a non-vanishing momen-
tum r = P − P ′ is transfered to the target. Thus in
leading twist rather nonforward matrix elements of quark
and gluon light-cone operators are probed. These can be
parametrized through so called “double distribution func-
tions” which where introduced in [5]. For the unpolarized
quark distribution one has:

〈N(P ′, S′)| ψ̄(0)ẑ [0, z]ψ(z) |N(P, S)〉z2=0

= N̄(P ′, S′) ẑ N(P, S)
∫ 1

0
dx

∫ x̄

0
dy

[
e−ix(P ·z)−iy(r·z)

×F (x, y, t)− eix(P ·z)−iȳ(r·z)F̄ (x, y, t)
]

+N̄(P ′, S′)
σµνz

µrν

iM
N(P, S)

∫ 1

0
dx

∫ x̄

0
dy

×
[
e−ix(P ·z)−iy(r·z)K(x, y, t)

−eix(P ·z)−iȳ(r·z)K̄(x, y, t)
]
, (2)

where we have used the notation ẑ = zµγ
µ. The operator

on the LHS of (2) is built from quark fields connected by
the path-ordered exponential

[0, z] = Pexp
[
−igzµ

∫ 1

0
dλAµ(zλ)

]

which guarantees gauge invariance and reduces to one in
axial gauge n · A = 0 (g stands for the strong coupling
constant and Aµ denotes the gluon field). On the RHS
we have the product of the Dirac spinors for the initial
and final nucleon. The quark and antiquark double distri-
bution functions F , F̄ , K and K̄ depend on the momen-
tum transfer t = r2, and two light-cone variables x and y
(x̄ = 1−x, ȳ = 1−y). Their interpretation is discussed at
length in [5]. Note that the distributions K and K̄ enter
proportional to the momentum transfer r.

A comparison of (1) and (2) demonstrates that in the
forward limit, r → 0, the double distributions reduce to
ordinary quark distributions, e.g.:

f(x) =
∫ x̄

0
dy F (x, y, t = 0). (3)

For the polarized quark and the unpolarized gluon distri-
bution one has [5]:

〈N(P ′, S′)| ψ̄(0)ẑγ5 [0, z]ψ(z) |N(P, S)〉z2=0

= N̄(P ′, S′)ẑγ5N(P, S)
∫ 1

0
dx

∫ x̄

0
dy

×
[
e−ix(P ·z)−iy(r·z)∆F (x, y, t)

+eix(P ·z)−iȳ(r·z)∆F̄ (x, y, t)
]

+K − terms, (4)
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zµzν 〈N(P ′, S′)|TrGµξ(0)[0, z]Gξ
ν(z), |N(P, S)〉z2=0

= N̄(P ′, S′) ẑ N(P, S)
P̄ · z

4

∫ 1

0
dx

∫ x̄

0
dy

×
[
e−ix(P ·z)−iy(r·z) + eix(P ·z)−iȳ(r·z)

]
G(x, y, t)

+K − terms, (5)

with P̄ = (P ′ + P )/2. In (4,5) we have only indicated the
so-called “K-terms” which are proportional to the mo-
mentum transfer r as in (2). Of course, relations similar
to (3) hold also for the double distributions in (4,5).

It is important to realize that the double distributions
defined above fulfill a symmetry constraint based on her-
miticity. For the unpolarized quark distributions F and F̄
this can be seen by considering the C-even (Σ) and C-odd
(∆) combinations:

Σ
∆

}
≡ 〈P ′, S′| ψ̄

(z
2

)
ẑ

[z
2
,−z

2

]
ψ

(
−z

2

)
|P, S〉z2=0

± (z ←→ −z) . (6)

From the definition (2), combined with the fact that dou-
ble distributions are real, it follows that Σ and ∆ are
purely imaginary and real, respectively:

Σ = 2iN̄(P ′, S′) ẑ N(P, S)

×
∫ 1

0
dx

∫ x̄

0
dy

[
F (x, y, t) + F̄ (x, y, t)

]

× sin
[
xP̄ · z + r · z

(
y − 1− x

2

)]
+K − terms,

∆ = 2N̄(P ′, S′) ẑ N(P, S)

×
∫ 1

0
dx

∫ x̄

0
dy

[
F (x, y, t)− F̄ (x, y, t)

]
(7)

× cos
[
xP̄ · z + r · z

(
y − 1− x

2

)]
+K − terms.

As a consequence Σ = (Σ − Σ†)/2 as well as ∆ = (∆ +
∆†)/2 is symmetric with respect to an exchange of the
initial and final nucleon momentum, i.e. P ↔ P ′ and si-
multaneously r ↔ −r. This yields the following sum rules:∫ 1

0
dx

∫ x̄

0
dy

[
F (x, y, t) + F̄ (x, y, t)

]

× cos
(
xP̄ · z) sin

[
r · z

(
y − 1− x

2

)]
= 0, (8)

∫ 1

0
dx

∫ x̄

0
dy

[
F (x, y, t)− F̄ (x, y, t)

]

× sin
(
xP̄ · z) sin

[
r · z

(
y − 1− x

2

)]
= 0. (9)

For the polarized quark nonforward distributions as well
as for the gluon distribution similar constraints can be de-
rived. They imply that the double distributions in (2,4,5)
are symmetric with respect to the exchange

y ←→ 1− x− y. (10)

This symmetry, besides being important for modeling dou-
ble distribution functions, is crucial for establishing proper
analytical properties of meson production amplitudes.

In the forward limit, r → 0, (2,4,5) immediately re-
duce to the definitions of ordinary twist-two parton dis-
tributions (1). On the other hand in the limit z → 0 (2,4,5)
define familiar nucleon form factors. One therefore obtains
the following sum rules for double parton distributions [3–
5]:

∫ 1

0
dx

∫ x̄

0
dy

[
F (x, y, t)− F̄ (x, y, t)

]
= F1(t), (11)

∫ 1

0
dx

∫ x̄

0
dy

[
K(x, y, t)− K̄(x, y, t)

]
= F2(t), (12)

∫ 1

0
dx

∫ x̄

0
dy

[
∆F (x, y, t) +∆F̄ (x, y, t)

]
= GA(t), (13)

∫ 1

0
dx

∫ x̄

0
dy

[
G(x, y, t) + Ḡ(x, y, t)

]
= G(t). (14)

F1, F2 and GA are the Dirac, Pauli and axial-vector form
factors of the nucleon. The gluon form factor G(t) is exper-
imentally not observable. Its dependence on the momen-
tum transfer has been estimated within QCD sum rules
[18], and is determined by a characteristic radius of the
order of 0.4 − 0.5 fm. Similar sum rules hold for the re-
maining distributions [4].

2.2 Nonforward distribution functions

In the definitions of double distribution functions (2,4,5)
the variable y always enters in the combination x+y ζ ≡ X
with ζ = r·z

P ·z . As a consequence it is possible to define e.g.,
unpolarized nonforward quark and antiquark distribution
functions [5]:

Fζ(X, t) =
∫ 1

0
dx

∫ x̄

0
dy F (x, y, t) δ (X − (x+ ζy))

= Θ(X ≥ ζ)
∫ X̄/ζ̄

0
dy F (X − yζ, y, t)

+Θ(X ≤ ζ)
∫ X/ζ

0
dy F (X − yζ, y, t),

F̄ζ(X, t) =
∫ 1

0
dx

∫ x̄

0
dy F̄ (x, y, t) δ (X − (x+ ζy))

= Θ(X ≥ ζ)
∫ X̄/ζ̄

0
dy F̄ (X − yζ, y, t)

+Θ(X ≤ ζ)
∫ X/ζ

0
dy F̄ (X − yζ, y, t), (15)

and similar for the polarized quark and gluon case. Since
the scattered nucleon is on its mass shell, i.e. P ′2 = M2

with the nucleon mass M , one finds ζ ≤ 1. Together with
the kinematic constraint x+ y ≤ 1 this gives 0 ≤ X ≤ 1.
The variable X can be identified with the nucleon light-
cone momentum fraction of the parton being removed by
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the operator Ô from the target, while the light-cone mo-
mentum fraction of the returning parton is equal to X−ζ.

In terms of the nonforward distribution functions the
light-cone correlators in (2,4,5) read:

〈N(P ′, S′)| ψ̄(0)ẑ [0, z]ψ(z) |N(P, S)〉z2=0

= N̄(P ′, S′) ẑ N(P, S)
∫ 1

0
dX

×
[
e−iX(P ·z)Fζ(X, t)− ei(X−ζ)(P ·z)F̄ζ(X, t)

]

+N̄(P ′, S′)
σµνz

µrν

iM
N(P, S)

∫ 1

0
dX

×
[
e−iX(P ·z)Kζ(X, t)− ei(X−ζ)(P ·z)K̄ζ(X, t)

]
,

〈N(P ′, S′)| ψ̄(0)ẑγ5 [0, z]ψ(z) |N(P, S)〉z2=0

= N̄(P ′, S′)ẑγ5N(P, S)
∫ 1

0
dX

×
[
e−iX(P ·z)∆Fζ(X, t) + ei(X−ζ)(P ·z)∆F̄ζ(X, t)

]
+K − terms,

zµzν 〈N(P ′, S′)|TrGµξ(0)[0, z]Gξ
ν(z), |N(P, S)〉z2=0

= N̄(P ′, S′) ẑ N(p, s)
P̄ · z

4

∫ 1

0
dX

×
[
e−iX(P ·z) + ei(X−ζ)(P ·z)

]
Gζ(X, t)

+K − terms. (16)

Note that in the literature also a second parametrization
of nonforward distributions is popular [4]. It is based on
a different asymmetry parameter ξ:

ξ =
1
2
r · z
P̄ · z =

ζ

2− ζ , with 0 ≤ ξ ≤ 1. (17)

Using for example for the unpolarized quark and antiquark
distributions

F ′(u, ξ, t) =
∫ 1

0
dx

∫ x̄

0
F (x, y, t)

×δ (u− (x+ ξ(x+ 2y − 1))) ,

F̄ ′(u, ξ, t) =
∫ 1

0
dx

∫ x̄

0
F̄ (x, y, t)

×δ (u+ (x+ ξ(x+ 2y − 1))) , (18)

allows to define an alternative nonforward distribution as:

H(u, ξ, t) = Θ(u ≥ ξ)F ′(u, ξ, t)
+Θ(ξ ≥ u ≥ −ξ)(F ′(u, ξ, t)− F̄ ′(u, ξ, t))
−Θ(−ξ ≥ u)F̄ ′(u, ξ, t). (19)

The parametrization of the nonforward matrix element (2)
in terms of the new distributions reads [4]:

〈N(P ′, S′)| ψ̄(0)ẑ [0, z]ψ(z) |N(P, S)〉z2=0

= N̄(P ′, S′) ẑ N(P, S)e−i r·z
2

×
∫ 1

−1
duH(u, ξ, t)e−iu(P̄ ·z) +K − terms. (20)

Both definitions of nonforward parton distributions are of
course equivalent. In the following we will always param-
eterize nonforward matrix elements as in (15,16), i.e. in
terms of variables X and ζ.

3 Model

Nonforward parton distributions have not yet been mea-
sured. Therefore one has to rely on models [19] in order to
provide estimates for exclusive production cross sections.
To guarantee a proper analytic behavior of the involved
amplitudes, as given by dispersion relations [20], it is fa-
vorable to model double distributions (2,4,5) instead of
nonforward distributions. We parametrize the former, de-
noted generically by F (x, y, t;µ2

0), such that they fulfill all
constraints we are aware of. As a model ansatz at some
low normalization scale µ2

0 we take [21]:

F (x, y, t;µ2
0) =

d(x, µ2
0)

(1− x)3 h(x, y) f(t), (21)

where d(x, µ2
0) stands for the corresponding ordinary

quark and gluon distribution, respectively. It is clear that
one can model in this way only the distributions F, F̄ ,∆F,
∆F̄ andG. The “K-terms” in (2,4,5) remain unconstrained
because the corresponding forward parton distributions
are not known. We choose:

h(x, y) = 6 y (1− x− y), (22)

such that F (x, y, t;µ2
0) satisfies the symmetry constraint in

(10). Of course there are many possible choices for h(x, y),
e.g. h(x, y) = 12

[
y − 1−x

2

]2. The latter however results in
a nonforward parton distribution which is not continu-
ously differentiable at X = ζ. Although we are not aware
of any principle which forbids such a behavior, we use
in the following the parametrization from (22) leading to
nonforward distributions smooth in X.

The form factor f(t) in (21) is responsible for the
t-dependence of the double distribution functions. Mo-
tivated by the relationship between double distributions
and nucleon form factors in (11 – 14) we assume:

f(t) =
(

1
1− t/Λ2

)2

. (23)

For quark distributions we take Λ from fits to the nucleon
vector and axial form factors [22]. It should however be
mentioned that the meson production amplitudes, as de-
rived in Sect. 5, are controlled by nonforward distribution
functions with different C-parity as compared to the above
nucleon form factors. In the case of the gluon distribution
the scale Λ can be taken from the QCD sum rule estimate
in [18]. One should keep in mind that a factorization of
the t-dependence into a form factor f(t) is reasonable only
at small values of |t|. At large |t| the minimal component
of the nucleon light-cone wave function dominates [23].
This should lead to a change of the entire x and y de-
pendence of F which cannot be absorbed in a pre-factor.
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Fig. 1. Polarized u-valence distribution ∆uζ(X; µ2 = 4) from
(21) for different values of ζ

However, as long as we are interested in the small-|t| re-
gion, the parametrization (21) should be acceptable from
a phenomenological point of view.

In Fig. 1 we present our phenomenological model for
the nonforward polarized u-quark distribution,∆uζ(X,µ2

0),
taken at t = 0. Here and in the following we use paramet-
rizations for the corresponding forward distributions, which
enter through (21), from [24]. One can recognize the char-
acteristic distribution amplitude like shape forX < ζ, and
the similarity to ordinary parton distributions at X > ζ.

4 QCD evolution of nonforward distributions

An important ingredient for the discussion of nonforward
distribution functions is their evolution, or dependence on
the normalization scale. In QCD it is governed by renor-
malization group equations which are direct generaliza-
tions of the well known DGLAP equations for ordinary
parton distributions.

Instead of looking at the distribution functions them-
selves it is convenient to consider QCD evolution at the op-
erator level [2,25]. Evolution equations for various quan-
tities, like evolution equations for meson distribution am-
plitudes [23,26], or the DGLAP equations for ordinary
parton distributions, follow then by taking appropriate
operator matrix elements. At the one loop level evolution
equations for operators can be solved by an expansion in a
set of multiplicatively renormalizable operators which are
determined through the conformal symmetry of one-loop
QCD [27].

In the following we outline a convenient numerical
method to perform the QCD evolution of nonforward par-
ton distributions. Details of the method and a thorough
discussion of its accuracy will be given in a separate pub-
lication. In the nonsinglet case the Gegenbauer moments
of nonforward parton distributions

Cζ(n;µ2
0) =

∫ 1

0
dX C3/2

n (2X/ζ − 1)Fζ(X;µ2
0) (24)

are multiplicatively renormalizable [5], and their evolution
reads:

Cζ(n;µ2) =
[
αs(µ2)
αs(µ2

0)

] γn
2β0 Cζ(n;µ2

0), (25)

with β0 = 11− 2
3Nf , The nonsinglet anomalous dimensions

γn are given as usual by:

γn = 4Cf


1

2
− 1

(n+ 1)(n+ 2)
+ 2

n+1∑
j=2

1
j


 . (26)

Because the Gegenbauer polynomials C3/2
n form an or-

thogonal set on the segment [−1, 1], the straightforward
inversion of (24) is possible only for ζ = 1. On the other
hand one can expand the Mellin moments of the nonfor-
ward parton distribution

Mn(ζ;µ2
0) ≡

∫ 1

0
dX Xn Fζ(X;µ2

0) (27)

in terms of Gegenbauer moments Cζ(n;µ2
0), and evolve the

latter according to (25). The corresponding expression has
been obtained in [5]:

Mn(ζ;µ2) = ζn n! (n+ 1)!
n∑

k=0

(−1)k

2 ζkk! (k + 1)!
Mk(ζ;µ2

0)

×
n∑

l=k

(−1)l 2 (2 l + 3)(k + l + 2)!
(n+ l + 3)! (n− l)! (l − k)!

×
[
αs(µ2)
αs(µ2

0)

] γl
2β0

. (28)

To obtain the evolved distribution from its moments one
usually performs an inverse Mellin transformation. In the
present case, however, (28) has a simple form only for in-
teger values of n, and therefore usual contour integration
methods (see e.g. [28]) in the complex n-plane are diffi-
cult to implement. This problem can be circumvented by
expanding the nonforward parton distribution Fζ(X;µ2)
in terms of e.g., shifted Legendre polynomials Pk(2X−1)
[29] which are orthogonal on the segment [0, 1]:

Fζ(X;µ2) =
∞∑

k=0

(2k + 1) ck(ζ;µ2)Pk(2X − 1). (29)

The coefficients ck(ζ;µ2) can be determined from the set
of moments Mn(ζ;µ2): if a shifted Legendre polynomial
Pk(2X − 1) follows an expansion

Pk(2X − 1) =
∑

n

an
k X

n, (30)

the coefficients ck(ζ;µ2) are given by:

ck(ζ;µ2) =
∑

n

an
k Mn(ζ;µ2) . (31)

In Fig. 2 we present typical results for the evolution
of the nonforward polarized u-valence quark distribution,
parametrized at µ2

0 = 4 GeV2 according to our model in
Sect. 3. For the leading order evolution we use Nf = 4
and ΛQCD = 250 MeV. The evolved distribution behaves
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Fig. 2. Evolution of the nonforward polarized u-valence dis-
tribution ∆uζ=0.2(X; µ2) for different values of µ2.

as expected: the area under the curve remains constant
as a consequence of the vanishing anomalous dimension
γ0. The evolution shifts the distribution to smaller val-
ues of X, approaching very slowly the asymptotic shape
∆uζ(X;µ2 →∞) = 6 C(0)X/ζ2 (1−X/ζ) [5]. 1

5 Exclusive meson production amplitudes

A solid QCD description of hard exclusive meson pro-
duction is based on the factorization of long- and short-
distance dynamics which has been proven in [8]. The main
result is that the amplitudes for the production of mesons
from longitudinally polarized photons can be split into
three parts: the perturbatively calculable hard photon-
parton interaction arises from short distances, while the
long-distance dynamics can be factorized in terms of non-
perturbative meson distribution amplitudes and nucleon
nonforward parton distributions. In the following we de-
rive production amplitudes for a variety of neutral mesons
in terms of these building blocks, staying at leading order
in the strong coupling constant αs.

The kinematics is defined as follows: the initial and
scattered nucleon carries a momentum P and P ′ = P − r,
respectively, while t = r2 stands for the squared momen-
tum transfer. The momentum of the exchanged virtual
photon is denoted as usual by q with Q2 = −q2. Then
q′ = q + r is the momentum of the produced meson. Cal-
culating the hard subprocess to leading twist accuracy al-
lows to neglect the momentum transfer t, the invariant
mass of the nucleon target P 2 = P ′2, and the mass of the
produced vector meson q

′2 as compared with the virtual-
ity of the photon Q2. Then the Bjorken scaling variable
xBj = Q2/2P · q coincides with the longitudinal momen-
tum transfer, i.e. ζ ≡ r · n/P · n = xBj .

In leading order in the electromagnetic interaction we
obtain for the S-matrix in question:

S = 〈M(q′)N(P ′)|Ŝ|γ∗
L(q)N(P )〉,

= −i
∫
d4x e−iq·x 〈M(q′)N(P ′)|εL · J(x)|N(P )〉. (32)

Here |γ∗
L(q)N(P )〉 denotes the incoming photon and nu-

cleon while 〈M(q′)N(P ′)| represents the final meson and

1 Recently a similar method has been proposed indepen-
dently in [30]

yz

x

(b)(a)

Fig. 3. Typical graphs which contribute to the hard exclusive
meson production amplitude

nucleon. The polarization vector of the longitudinally po-
larized virtual photon is given by εµL = i

Q (q′ + xBjP )µ,
and Jµ is the electromagnetic current.

In second order perturbation theory we arrive at:

S = 2π i αs

∫
d4x d4y d4z e−iq·x

×〈M(q′)N(P ′)|M(x, y, z)|N(P )〉, (33)

with the time-ordered product of quark and gluon fields:

M(x, y, z) = T
(
ψ̄a(z)γρψb(z)ψ̄c(x)ε̂Lψc(x)

×ψ̄d(y)γσψe(y)AA
ρ (z)AB

σ (y)
)
tAabt

B
de, (34)

where tA and tB denote the generators of color SU(3).
As a next step we perform the usual Operator Product
Expansion of M(x, y, z). Choosing, for example, the flow
of the hard momentum q as in Fig. 3a, we obtain a term
which can be interpreted as photon-meson transition in a
background quark field provided by the nucleon. In the re-
maining (not shown) leading order contributions the pho-
ton couples to one of the other possible quark lines. A
different choice of the hard momentum flow results in a
photon-meson transition in the background gluon field as
shown in Fig. 3b. This gluon contribution has been dis-
cussed several times in recent papers [5,7,31]. We there-
fore outline in the following the calculation of the quark
part. Here the diagram in Fig. 3a corresponds in leading
order αs to:

M(x, y, z) 3 [
ψ̄d(y) γσ ψe(y)

]
×

[
ψ̄c(x)ε̂L Sq(ca)(x− z) γρ ψb(z)

]

×Sg(BA)
σρ (y − z) tAabt

B
de. (35)

Sq and Sg stand for the quark and gluon perturbative
Feynman propagators, respectively. Next we perform a
Fierz transformation in color- and Dirac-space. Of course
in color-space only the singlet piece survives when matrix
elements between colorless hadronic initial and final states
are taken. In Dirac-space we have:

[
ψ̄d(y) γσ ψe(y)

] [
ψ̄c(x)ε̂L Sq(ca)(x− z) γρ ψb(z)

]

=
∑
i,j

Cσρ
ij Ôi(y, z) Ôj(x, y), (36)
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with the operators Ôi and Ôj defined as:

Ôi,j(y, z) =
[
ψ̄(y)Γi,j ψ(z)

]
. (37)

The coefficients Cij are given by:

Cσρ
ij = − 1

16
Tr [γσΓj ε̂L S

q(x− z) γρΓi] ,

with Γi,j ∈ {1, γ5, γ
µ, γ5γ

µ, σµν}. (38)

For color singlet final states higher order corrections gen-
erate path-ordered exponentials which ensure gauge-inva-
riance of the operators Ôi,j [5]. As a next step leading
twist pieces have to be extracted. In the massless limit,
i.e. P 2 = P ′2 = q

′2 = 0, this can be achieved by using the
Sudakov decomposition of γ matrices:

γµ =
q̂′

P · q′ P
µ +

P̂

P · q′ q
′µ + γµ

⊥. (39)

Typically only longitudinal terms proportional to P or
q′ contribute at the twist-2 level. Evaluating the corre-
sponding trace and sandwiching operators Ôi and Ôj be-
tween initial and final states gives the desired amplitudes
in terms of meson distribution amplitudes and nucleon
nonforward parton distributions. An important outcome
of this calculation is that only operators with Γi = Γj con-
tribute. Since the spin and parity of the produced meson
determines the Dirac matrix in the meson amplitude, it
automatically fixes the involved nonforward distribution.

5.1 Vector mesons

To leading twist accuracy two amplitudes for longitudi-
nally and transversely polarized vector mesons exist (see
[32] for a recent discussion). In the longitudinal case one
has:

〈M(q′)| ψ̄(x)P̂ψ(y) |0〉

= q′ · P fVL

∫ 1

0
dτ ΦVL

(τ) eiq′· (τx+τ̄y), (40)

where fVL
and ΦVL

denote the corresponding decay con-
stant and distribution amplitude. According to our previ-
ous discussion this implies that the quark contribution to
the production of longitudinally polarized vector mesons
is determined by the nucleon matrix element
〈N(P ′)|ψ̄(z)q̂′ψ(y)|N(P )〉. As a consequence the nonfor-
ward quark distributions F andK, defined in (2,16), enter.
The corresponding amplitude reads:

Aq
VL

= π αs
CF

Nc

1
Q

N̄(P ′, S′)q̂′N(P, S)
P · q′ fVL

∫ 1

0
dτ
ΦVL

(τ)
τ τ̄

×
∫ 1

0
dX

[
Fζ(X, t) + F̄ζ(X, t)

]

×
(

1
X − iε +

1
X − ζ + iε

)

+π αs
CF

Nc

1
Q

N̄(P ′, S′)(q̂′r̂ − r̂q̂′)N(P, S)
2M P · q′

×fVL

∫ 1

0
dτ
ΦVL

(τ)
τ τ̄

×
∫ 1

0
dX

[
Kζ(X, t) + K̄ζ(X, t)

]

×
(

1
X − iε +

1
X − ζ + iε

)
. (41)

Since the virtual photon and the final state vector me-
son carry the same C-parity, vector meson production can
take place also in the gluon background field. Its contri-
bution is [5,7,31]:

Ag
VL

= 2π αs
1
Nc

1
Q

N̄(P ′, S′)q̂′N(P, S)
P · q′

×
(

1− ζ

2

)
fVL

∫ 1

0
dτ
ΦVL

(τ)
τ τ̄

(42)

×
∫ 1

0
dX

Gζ(X, t)
(X − iε)(X − ζ + iε)

+K − terms,

with G being the nonforward gluon distribution (5) of the
nucleon.

Transversely polarized vector mesons are described by
the amplitude [32]:

〈M(q′)| ψ̄(x)σµνψ(y) |0〉 (43)

= −i(εµq′
ν − ενq′

µ)fVT

∫ 1

0
dτ ΦVT

(τ) eiq′· (τx+τ̄y).

Their production from longitudinally polarized photons
involves chiral-odd nucleon nonforward parton distribu-
tions. Thus, in general, only the nonforward quark trans-
versity distribution contributes. An explicit calculation
shows, however, that in leading order αs the twist-2 contri-
bution vanishes and one has to go either to higher orders,
or to higher-twists to obtain a non-zero result.

5.2 Pseudoscalar mesons

In the case of pseudoscalar mesons one ends up with the
amplitude:

〈M(q′)| ψ̄(x)γ5P̂ψ(y) |0〉

= i q′ · P fPS

∫ 1

0
dτ ΦPS(τ) eiq′· (τx+τ̄y), (44)

with the meson decay constant fPS and the distribution
amplitude ΦPS . According to the above discussion the pro-
duction process is sensitive to the nonforward nucleon ma-
trix element 〈N(P ′)|ψ̄(z)γ5q̂

′ψ(y)|N(P )〉. Thus the non-
forward polarized quark distributions ∆F and ∆K from
(4,16) enter. Collecting all leading order contributions gives
for the pseudoscalar meson production amplitude:

APS = i π αs
CF

Nc

1
Q

N̄(P ′, S′)γ5q̂
′N(P, S)

P · q′
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Table 1. Flavor structure for π0 and η production. Analogous
relations hold for the ”K − terms”

∆Fζ(X, t) − ∆F̄ζ(X, t)

π0 √
2

[ 1
3 (∆uζ − ∆ūζ) + 1

6 (∆dζ − ∆d̄ζ)
]

η
√

6
[ 1

9 (∆uζ − ∆ūζ) − 1
18 (∆dζ − ∆d̄ζ) + 2

9 (∆sζ − ∆s̄ζ)
]

×fPS

∫ 1

0
dτ
ΦPS(τ)
τ τ̄

×
∫ 1

0
dX

[
∆Fζ(X, t)−∆F̄ζ(X, t)

]

×
(

1
X − iε +

1
X − ζ + iε

)
+K − terms, (45)

Due to C-parity conservation pseudoscalar meson produc-
tion receives contributions only from C-odd nonforward
distribution functions. As an immediate consequence two
gluon exchange is impossible. At least three gluons have
to be exchanged, which in the language of twist expansion
corresponds to higher-twist.

6 Results

Using the derived production amplitudes together with
the model distributions from Sect. 3 allows to calculate
the production of neutral pseudoscalar and vector mesons.
In both cases we use the asymptotic meson distribution
amplitude [23,26]:

ΦPS(τ) = ΦVL
(τ) = 6τ(1− τ). (46)

In numerical calculations we have neglected the practi-
cally unconstrained “K-terms”. As their contribution en-
ters proportional to r it is bound to be small at small
momentum transfers.

6.1 π0 and η production

To obtain predictions for a specific process the generic
amplitudes from Sect. 5 have to be furnished with fla-
vor charges. Using standard SU(3) wave functions for the
pseudoscalar meson octet implies for π0 and η produc-
tion2 an replacement of the nonforward distributions in
(45) through distributions with specific flavor as listed in
Table 1. For π0 production we use the standard value for
the decay constant fπ = 133 MeV. In Fig. 4 we present
the corresponding differential production cross section for
a proton target taken at t = tmin = −x2

BjM
2/(1 − xBj).

We restrict ourselves to the region |tmin| < 1 GeV2, which
implies xBj < 0.6.

One finds that, up to logarithmic corrections, the pro-
duction cross section drops as 1/Q6. Furthermore, at small

2 We restrict our considerations to the pure octet state η8,
neglecting mixing with the singlet state η0

Fig. 4. Differential cross section for exclusive π0 production
from protons at t = tmin

Table 2. Flavor structure for ρ0, ω and Φ meson production

Fζ(X, t) + F̄ζ(X, t) Gζ(X, t)

ρ0 √
2

[ 1
3 (uζ + ūζ) + 1

6 (dζ + d̄ζ)
] 1√

2
Gζ

ω
√

2
[ 1

3 (uζ + ūζ) − 1
6 (dζ + d̄ζ)

] 1
3
√

2
Gζ

Φ − 1
3 (sζ + s̄ζ) − 1

3 Gζ

values of xBj the calculated cross section is proportional to
x2λ

Bj with λ ≈ 0.6. This behavior is controlled by the small-
xBj behavior of the polarized valence quark distributions
which enter in (21). For the used parametrizations from
[24] one has indeed xBj∆uv(xBj) ∼ xBj∆dv(xBj) ∼ xλ

Bj .
The decrease of the production cross section at large xBj

is due to the form factor in (21). It is important to note
that this behavior should be quite general and largely in-
dependent of a specific model for double distributions. The
reason is that the rise of the production cross section with
increasing xBj is brought to an end through the decrease
of the involved nonforward or double distributions at large
momentum transfers |t|. Since the latter is determined by
a typical nucleon scale, Λ ∼ 1 GeV, the maximum of the
pseudoscalar meson production cross section at t = tmin

should occur when tmin starts to become sizeable, say
−tmin/Λ

2 & 0.2. This implies xBj ≈ 0.3 in accordance
with our result.

Our prediction for the η production cross section turns
out to be approximately a factor 2/3 smaller than for π0,
but of similar shape. This is due to the comparable shape
of the polarized u and d valence quark distributions from
[24] which enter in (21).

6.2 Vector meson production

For ρ0, Φ and ω production the nonforward distributions
in (41,43) have to be modified according to Table 2. In the
kinematic domain of small xBj < 0.01 the quark part of
the production amplitude (41) is negligible. Then the well
known SU(3) relation for the cross section ratios σ(ρ) :
σ(ω) : σ(Φ) = 9 : 1 : 2 follows immediately from Table 2.

In [10–12] hard exclusive neutral vector meson produc-
tion has been investigated at small values of xBj within
the framework of perturbative QCD. In this work the non-
forward gluon distribution which, in general, enters the
production amplitude (43) has been approximated by the
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Fig. 5. Cross section for ρ0 production from a proton through
the interaction of longitudinally polarized photons. The data
are taken from ZEUS [33] (open squares) and NMC [34] (filled
circles)

ordinary gluon distribution. In the limit of small xBj the
obtained amplitude corresponds to (43) after the replace-
ment Gζ(ζ, t) → ζ g(ζ), where g denotes the ordinary
gluon distribution. However, note that for a typical be-
havior of the gluon double distribution G(x, y, t) ∼ x−λ

with λ > 0 one obtains from (3) for the ratio:

Gζ(ζ, t = 0)
ζg(ζ)

≈ 1 + λ

∫ 1
0 dy y G(ζ, y, t = 0)∫ 1
0 dy G(ζ, y, t = 0)

> 1. (47)

For our model distribution from Sect. 3 this leads to an
increase of the vector meson production cross sections by
nearly a factor of two as compared to the results of [12].

It should be mentioned that the leading order calcu-
lations from [10–12] overestimate the experimental data
from HERA [9] by a typical factor 5 − 10. Additional
Fermi motion corrections have been added to fit exper-
imental data. This emphasizes the need for a systematic
investigation of higher twist effects [31].

In Fig. 5 we present the result for ρ0 production from a
proton in the kinematic domain of HERA [33] as obtained
from the amplitudes in (41,43), combined with the double
distributions from Sect. 3. For the ρ meson decay constant
fρ = 216 MeV has been used. After multiplying with a
suppression factor T (Q2 = 16.9 GeV2) ≈ 0.1 from [12]
qualitative agreement can be achieved.

Finally we would like to note that special attention
should be paid to exclusive charged meson production.
Here at large Q2 nonforward parton distributions are
probed which are related to matrix elements of twist-2
non-local operators off diagonal in flavor:

Ôqq′(x, y) = q̄(x)Γ q′(y), (48)

with flavor dependent quark fields, q = u, d, s. As a con-
sequence hard exclusive charged meson production offers
possibilities to explore exotic parton distributions which
have not been measured elsewhere. These obey isospin
symmetry relations analogous to the Bjorken sum rule
known from polarized deep-inelastic scattering:

〈n|Ôdu(x, y)|p〉 = 〈p|Ôuu(x, y)|p〉 − 〈p|Ôdd(x, y)|p〉,
〈n|Ôdu(x, y)|p〉 = 〈n|Ôdd(x, y)|n〉 − 〈n|Ôuu(x, y)|n〉. (49)

Here 〈n| and 〈p| denote neutron and proton states, respec-
tively. These sum rules imply a close relation of charged

meson production cross sections. They allow, for example,
to relate the isovector part of the amplitude for ρ0 pro-
duction to a linear combination of ρ+ and ρ− production
amplitudes.

7 Summary

Ordinary parton distributions accessible e.g., in deep-ine-
lastic scattering measure the nucleon response to a process
where one parton is removed and subsequently inserted
back into the target along a light-like distance, without
changing its longitudinal momentum. Generalized parton
distributions, so-called nonforward distributions, can be
studied in deeply virtual Compton scattering and hard
exclusive leptoproduction of mesons. They describe a sit-
uation where the removed parton changes its longitudinal
momentum before returning to the nucleon. Furthermore,
hard exclusive charged meson production provides possi-
bilities to investigate new processes where the removed
quark carries different flavor than the returning one.

In this paper we have studied general properties of dou-
ble and nonforward parton distributions. We have found
a symmetry of quark and gluon double distribution func-
tions based on their relation to nonforward matrix ele-
ments of QCD string operators. Its implication for phe-
nomenological models has been outlined.

Although the leading order QCD evolution equations
seem to be more complicated in the non-forward than in
the forward case, one can solve them explicitly using an
expansion in a set of orthogonal polynomials instead of
performing a Mellin integral in the complex plane of distri-
bution function moments. We have outlined this method
for the flavor nonsinglet case. A generalization to flavor
singlet distributions is possible.

In the second half of this paper we have derived the
amplitudes for the hard exclusive production of neutral
mesons from longitudinally polarized photons. After sug-
gesting a phenomenological model for double or nonfor-
ward distribution functions which obey appropriate sym-
metries, we have presented results for exclusive π0, η and
ρ0 production.

In the pseudoscalar case nonforward polarized valence
quark distributions enter. Several features of the presented
results should be independent of our specific model for
nonforward distribution functions: at small xBj pseudo-
scalar meson production cross sections drop for decreas-
ing xBj . This is related to a similar behavior of the corre-
sponding forward distributions. Furthermore, the produc-
tion cross sections peak at moderate xBj . This is due to
the dependence of the involved nonforward distributions
on the momentum transfer which should be controlled by
a typical nucleon scale.

We also have presented results for ρ0 production in the
kinematic domain of recent HERA measurements. Here
the production process is dominated by contributions from
the nonforward gluon distribution. For a large class of
model distributions this tends to be larger than the cor-
responding forward distribution.
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